ProScala

Getting Scala programming well known

Functional Programming

There are many different paradigms in programming [X, which we can put in
different groups based on their importance and role in application development
and they can be sorted based on their adoption. Considering the evolution of
paradigms and the ones that can be considered general purpose, we can pick
Imperative/Procedural and Functional as two ends of a scale in general

application development and treat the others as auxiliary concepts.

What would be the point of inventing programming from the ground up, if we had
no resource limitations and would not need to care about the structure of the
underlying hardware? Interpreting human's will to instruct a computer would most
comfortably result in structured describing text close to human speech?] not

dealing with machine specific operations.



Pure declaritive solutions - though being close to human speech - lack the
characteristic of letting us implement anything we want, these are mostly domain

specific solutions (eg. SQL[B3I).

The most close to nature solution of handling an input to
output transformation being the purpose of computing are

mathematical functions.

Functions produce their output solely from their input. Functions are composeable.

= flg)



What are the reasons behind that computing was not created this
way from its inception?

Nature of computer hardware is Imperative, on the lowest level you won't meet a
circuit structure which on it's own has a shape of a function. Lowest level processor
operations include accessing specific memory addresses, using the most basic

arithmethic operations and doing simple conditional jumps.

global _start syscall
mov rax, 60
_start: mov rax, 1 Xor rdi, rdi
mov rdi, 1 syscall
mov rsi, message
mov rdx, 13 section .data
message: db "Hello, World", 10

Example assembly code [4]

Accessing memory is arbitrary in most cases, though there are simple procedures,
there's no such thing like hardware isolation to make these structures work exactly
like mathematical functions regarding which referential transparency %! (relying
solely on the input, therefore producing same result for same input) is the expected

natural behavior.



Is Imperative a misconception?
e atleaston the lowest level things will be Imperative, but that is their place
to live
* onthe high level it is, considering proveably higher mathematical chance
of getting into debugging issues

e some concepts can still be mixed with Functional (like OOP)

Evidence of resource saving using Functional instead of

Imperative programming

Key pain points:

* syntax readability and debuggability [€]

» performance by clean code
» enforced blocks by using constants
e concise built-in design patterns
e code ownership [Missues - by skill (eg. patterns) - by domain getting

mixed

* Functional sense clean code 8] - easy to locate errors, code

structuring

Cost of bug location

The relative cost of bug location and fixing exponentially grows based on whether
it is discovered in the requirements, design, coding, unit test, system test phase or

on field when the project is live.



Functional patterns provide developers the means to be able to go for sure to
discover bugs in the unit testing phase the latest, assuming that given a well
defined feature set resulting in a precise codebase, the chance is minimized to let
coding errors cause problems in the system test phase or later. Still, human error
can't be avoided, however at least coding error cost could be minimized, given that,
errors from the system test phase will mostly originate from poor overall design or

module integration.

Costs

...with a function:

» size of scope to review in case of unexpected outcome:
* Mathematical function : function scope
» Imperative programmatic function (using variable out of scope of

function) : whole program scope

...with constant usage enforced and without:

» with constant: single point of value assighment

e withvariable: arbitrary points of value assignment



...with composing mathematical functions:

e with mathematical function composition: calculable binary steps
e with Imperative programmatic function (using variables out of scope of

functions): can be infinite

Functional Alternative for
Java

Advantages and disadvantages of a pure Functional®

language

In a pure Functional language, Functional sense clean code is enforced strictly but
is less readable and results in a much steeper learning curve for a Java developer.
Pure Functional languages do not contain OOP solutions in a way that a Java

developer could easily get accustomed to.

OOP is not necessarily contrary to the Functional paradigm, though we should
keep some restrictions in mind to use an OOP structure in a Functional way. There
comes the concept of OOP-Functional hybrid languages [1%, which let us use OOP

structures and even utilize them to expand the concept of the Functional paradigm.



vell knov

Getting Sc:

ProSc

Focusing on programming languages being designed based on the Functional
paradigm from their inception, picking those which are OOP-Functional hybrids,
we have the chance to examine, which is a good fit for Javall!l and other
Imperative background developers to take their knowledge to the next level with

an easier entry burden, compared to pure Functional.

Key points in comparing such languages are community activity, design for general

usage and vendors using them.

OOP-Functional hybrid languages community activity based on
Github search12;

R

Scala Rust Lisp
289.181 124.602 66.534 14.315



General or domain specific usage factors:

* Scala- general usage, JVM language, interoperable with Java, Java-ish

syntax

Rust - general usage, C++ like syntax

Lisp - general usage

R - domain specific for statistics

Vendors 3 using specific Functional languages:
e Scala- Twitter, Foursquare, Apple, UBS, LinkedIn, SoundCloud, Morgan
Stanley
* Rust- Firefox, Dropbox, Yelp
* R-Airbnb, The Economist, Facebook, Google

e Lisp - Grammarly, Siscog

Considering the above factors, Scala 24 is ProScala's choice to be the language to
promote and to illustrate Functional style programming benefits for Java and other

developers.



Community Goals

Hurdles™! of getting programming languages like Scala

widespread

Paradigm-bias of education

e Learning curve

» Gravity-effect of incumbent, large languages
e Sunk cost fallacy16]

e More and more vendors needed



Addressing the latter issues is a huge interest of the community, securing existing
Scala/Functional based jobs for fostering a higher adoption of the language. The
more means the community has to bring in more vendors, the higher the impact is

on the industry.

Foundation

ProScala Foundation's aim is to advance vital and self-sustaining activities that can
change the paradigm-bias of education [17], dealing with learning curve issues 18],
and to provide means for the community to pursuade vendors and developers into

adopting advanced and friendly technologies.




The Foundation focuses on promoting content creation that is in harmony with
these goals and partners with firms or individuals who are willing to advance

community goals in an organized manner.

The Foundation raises funds for supporting authoring, design, audio creative work
and marketing activities and the leadership to keeping these pieces together,
aimed to bring forth a result in providing a framework that helps advancing the
mentioned goals. Support the Foundation to be able to deal with ongoing content
creation, delivery, marketing efforts to build up enough traction to have a higher
impact, and consulting activity in regard to guidelines for an effective way of

implementing Functional and Scala in your organization.

Self-sustaining Process

Multiple channels to let the community foster advanced tech
adoption ¢

By providing the right user experience for the people consumi

- - - -
educational content, and the right tools to reach others, also to talk about all the

topics that can attract more vendors, it is more likely to reach community goals.



Podcast sponsored by Foundation aiming to be flagship content.

Addressing the issue of making technical content easily consumable is key to
reaching not just technical, but business audiences and to give an easy to see
through guidance about whether it is worth the effort to div per into a specific
topic. The podcast aims to fulfill these goals and to be a basis of systematically built

other content that can reference it.

Membership site integrated in the process to foster community
activity on a business level.

Reaching the right community size while providing ever-green flagship content can
be the key to ignite a cycle of positive feedback of the usefulness of advanced
technologies, then allowing to remove the above mentioned barriers that recently

prevented getting these widespread.

Podcast Concepts

ProScala podcasts aimes to provide easy to consume

educational content that helps to involve all stakeholders.



The added value of the material compared to conventional content available on the
Internet is to build it up the hard way, meaning, we stick to the aim of addressing
multiple audiences, while providing useful information in a much shorter time for

the listeners compared to traditional means of IT education [29],

It is built top-down providing a big picture about issues and industry practices
giving the opportunity for people unfamiliar to Functional, experts and business
decision makers to decide whether a specific concept can save them time and
money, not to mention stakeholders' delight that advanced technologies can bring

to the process and organizations.



Membership Site

Once core content creation activities gain enough traction that can be the
subscriber source of a membership site aligned with community goals, industry
knowledge exchange can be done on a business level bringing in more incentives to

the process of advancing change in the industry.

Aligned with the goal of bringing in more vendors to the Functional space both
including larger companies and greenfield projects, a membership site can
facilitate growth by letting various industry players (developers, recruiters,
decision makers) meet and exchange their knowledge in a controlled way each
getting an incentive for their vital interactions, meanwhile producing community

value.

The offer for developers addresses the issue that getting useful advanced technical
knowledge quicker is most likely to happen by attending costly in-person multi-day
trainings or conferences [2%]. Our aim is to provide similar value for a fair price
compared to the previously believed effective solution, granting the chance for

more people to participate.



The offer for recruiters is that they can work in a controlled manner with less
overhead, though it is expected to create much less noise[?l] then what could
otherwise be seen in social media channels. Relevant business information is
curated, and can be reached in a marketplace like fashion, the aim is to have such
business interactions be vetted by the community itself. This can make member
recruiters much more likeable for developers compared to their out of membership

site competitors.

The offer for decision makers is that they can gain industry insights that are
resulting from discussions ignited by content especially tailored for their needs, as
the content being built top-down in a predecision research manner, therefore the
main flow of communication won't be about pure low-level technicals but the

business level utility even considering that this will still be dev talk.

Business Model Research

Fulfilling the mission of serving all the relevant community goals to bring the
Foundation and it's partnered businesses the chance to be vital to advance change
in the industry results in the need for an alternative business model compared to

incumbent solutions however this raises the question of user acceptance.



Traditional concepts are mostly based on providing a single audience podcast for
free with low-cost hands-on coding materials, which does not address the issue of
creating a multi-audience engaging top-down built content that is easily

consumable and can attract people in no time.

For these reasons, research was made to make sure that the target audience would
be happy with pairing top-down built evergreen podcast content with a
membership site providing premium content. According to research, a relative
majority of developers liked the concept and an absolute majority of them are
willing to pay for premium services. Research was made based on prequel
episodes and social media outreach, results were reassured by polling the

community about the first broad topic episodes.



Expected Effect

It is expected to attract significant community involvement in interacting with
content aiming to ignite discussions and provide valuable possibilities for people
keen on Functional programming to tell others why it has an important role in the
industry, and it is also likely that the provided materials for reasoning to decision

makers will be useful as well.




A community effort requiring job is expected to be tough with building enough

traction for sustaining user activity in a membership site, however given thatrisk a

vital outcome is to take place on the short term like simply bringing in a significant

portion of new players, and a disruptive outcome on the long run, like having an

effect on IT education to bring it toward making the learning curve of Functional

less steep.

AUTHOR

References

[1] A Programming paradigms

[2] A Hints on programming-language design - 13.3.5. Readability

[31ASQL
[4] A Example for close to machine (low-level) - Assembly language programming "Hello World"
example

[5] A Referential transparency

[8] A Functional patterns are well aligned practicing debugging strategies Essay about the concept of

simply not letting buggy code compile

[7] A Code ownership being approached above from a preferred Feature Driven Development point

of view

[8] A Clean code in Functional programming

[3] A Example of a pure Functional language is Haskell

[10] A Languages sharing both Functional and object oriented traits

Mmita

[12] A Github activity related to specific languages as of Nov 2021

: :

]

[13] A Vendors using programming languages

[14] A Scala programming language

[15] A Empirical Analysis of Programming Language Adoption - 5; 5.4; 6; 6.1;

[18] A Sunk Costs, Rationality, and Acting For the Sake of the Past

[17] A The Case for Teaching Functional Programming

[18] A Online vs. Traditional Education

[19] A Conferences prices

[20] A Why Traditional Recruitment Doesn't Apply to Tech - point 4. on noise

711 A Deataile abant Ennctional nrogramming learning clirve leciiae









